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Abstract. We present simulation results for 30 self-avoiding walks of moderate length 
(N < 2000). using a recently introduced recursive sampling method. We show that this method 
is indeed maximally efficient for determining the connectivity constmt F.  Combining OUT data 
with previous results from exact enumerations and from simulations of very long walks using 
the pivot algorithm. we obtain very precise estimates of p and of the critical exponents y and 
U. We also point out significant deviations from uniformity in a very popular random number 
generator which was considered safe until now. 

Self-avoiding walks (SAWS) are one of the prime models in the theory of critical phenomena. 
This results 'not only from the fact that they are related to the n + 0 limit of the O(n) model 
[I], but also from their great importance as a model for randomly coiled linear polymers. 

While the asymptotic behaviour of'zD SAWS is basically understood, the critical 
exponents are still only approximately known in three dimensions. Besides field theoretic 
approximations ( E  and loop expansions) it seems that Monte Carlo (MC) simulations and 
exact enumerations of short walks are the most efficient tools. 

For estimating end-to-end distances and radii of gyration (and thus the critical exponent 
U defined via RN - N")~the most efficient known MC method is the pivot algorithm [Z]. It 
needs a CPU time roughly of O(N) to produce one statistically independent SAW of length 
N. It does this by making efficient global moves: each move consists of a random choice 
of a 'pivot' on the chain, and a subsequent rotation or reflection of one half of 'the chain 
around this pivot. This is to be compared with the best MC algorithm using local moves, due 
to Beretti and Sokal [3]. In this latter algorithm a grand canonical ensemble is generated at - O(Nz) steps per statistically independent SAW of length N. 

Recently, we introduced a new MC algorithm, called the 'recursive sampling' (RS) 
method in the following [4]. It is very similar to the incomplete enumeration method of 
Redner and Reynolds [5] (which is itself similar to the BerettiSokal algorithm). The basic 
difference from the Redner-Reynolds algorithm is that we dothe incompIete enumeration by  
means of a recursive call to a subroutine. This subroutine has a lattice site as its argument, 
and essentially does nothing else but calling itself at the neighbouring lattice sites'after 
having put a flag at its argument site (to indicate that the site has been visited) which is 
cleared when the subroutine is exited. A complete BASIC routine is given in the appendix of 
[4]. In contrast to complete enumeration, the subroutine is called for each neighbour of the 
present site only with a probability P < 1. The use of recursive subroutine calls makes the 
otherwise tedious book-keeping trivial. It also makes the algorithm very short, intuitive and 
flexible. The latter follows from the fact that the probability P does not have to be constant, 
but can depend, e.g., on the walk length N or on the present site i. It was essentially the 
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latter which was stressed and used in [4], where SAWs were studied in random media by 
means of a learning algorithm for optimizing the N-dependence of PN. 

The fact that it is very easy to obtain arbitrarily biased samples makes the RS method 
ideally suited for such problems as polymers near surfaces or edges, or polymers with self- 
attraction (@ polymers 111). In these cases, the pivot algorithm should become inefficient 
due to the much lower acceptance rates for global moves, while the modifications in the RS 
method are trivial. Applications to these problems will be discussed elsewhere [6]. In the 
present paper I shall discuss ordinary SAWs in three dimensions, in spite of the fact that the 
method seems at first sight much less efficient than the pivot algorithm in this case. 

The reasons why the RS method can also be useful for ordinary SAWs are twofold. First, 
due to the simple program and small overheads it is very fast for intermediate length SAWS 
(faster, it seems, than the known implementations of the pivot algorithm for N - lo'), and 
results for such walks can heIp in estimating conections to scaling. Second, we can show 
that the RS method indeed makes the best use of the random number generator (within a 
very large class of algorithms) for estimating the connectivity constant p. The latter is 
defined via the number C ( N )  of SAWS of length N as 

C ( N )  - p"y-1. (1) 

Thus we can obtain the best estimate so far of p, which is then combined with existing 
exact enumerations [7] to obtain a better estimate of y .  

Let us discuss the second aspect fist. Assume that we use in an MC simulation a 
sequence of (pseudo-)random numbers ri E [O, I]. Each ri is compared with a fixed real 
number p ,  and some action is taken if and only if ri c p .  This is the typical way that 
random numbers are used in order to estimate a threshold such as the critical fugacity 
pc  = l / p  of SAWS. We cannot prove that there. is no other method which makes better use 
of the ris (the above uses less than 1 bit, if p f 1/2), but we shall prove that the RS method 
is optimal within this class of comparison-based MC methods. 

Assume that in running a comparison-based MC method one draws in total M random 
numbers. Let us call m the number of cases where ri c p .  Then we know that (m) = p M ,  
but m will fluctuate with a variance 

(Am)' = p ( 1 -  p ) M .  (2)  

If we use this for estimating ps  from the number of actions taken (i.e. from m),. then the 
error of pc  is at lea& 

A P ~  2 J P ~  - P , ) / M .  (3) 

We will now show that this inequality can be saturated by a proper choice of the acceptance 
probabilities P,v. If PN is the probability with which each possible 1-step extension of an 
( N  - 1)-step SAW is accepted, then the average number of N-step SAWs is 

N N 

The total CPU time for generating an ensemble of SAWS with no starts will be 

T = . E n N  
N 
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(with c a constant of order l ) ,  and the total number of random number generator (RNG) 
calls will be 

M = E n N & . .  
N 

The relative variance of np can be estimated recursively, 

Assume now that we can only simulate SAWs of length < N (due to storage limitations, for 
example), and we want to minimize AnN. Since the variance will decrease cx 1 /T  due to 
the central limit theorem, we have to minimize the product 

By the Schwarz inequality, the minimum is attained for nj cx m. Together with (4) 
this gives a recursion relation for Pj which, for large N ,  gives 

Inserting this into (8) and replacing T by M ,  we find (again for large N )  

If we would know y and all corrections to scaling exactly, ,then this error of n N  would 
imply an error of p or of p E  = l / p  which is given precisely by (3). Since the uncertainties 
of y and the corrections to scaling do not influence the estimate of pc  for N --f 00, we see 
that the optimal results are obtained by choosing N as large as possible [3]. 

In our simulations we computed errors of nN from the sample-to-sample fluctuations 
and indeed found (3) to be saturated for the optimal choice of Pj given by (9). However, 
nearly as good results were obtained if we simply took Pj = 1/p. 

The error in the end-to-end distance RN cannot be estimated in the same rigorous way. 
But a simple heuristic argument due to Beretti and Sokal (as well as exact bounds given 
by them for the algorithm in [3]) also applies to the present algorithm; for the 'optimal' 
choice of Pj the algorithm essentially makes a random walk in the chain length k with 
reflecting boundaries at k = 0 and k = N .  Thus we need - N 2  steps to reach k = N when 
starting from k = 0, giving one statistically independent SAW of length N .  The relative 
variance (ARN/RN)'  should  be^ inversely proportional to the number of such SAWs, giving - N / m .  During this'simulation we can also measure Rk with k < N ,  and 
spend a fraction k / N  of steps on its measurement. Thus the error ARK/& from a simulation 
of SAWS with length up to N should be 

A R k / R k -  k = 1.2, ... ( N .  (11) 
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This argument is not quite correct since the walk in the chain length is not a simple 
uncorrelated random walk. We should thus expect that A%/% will increase with a slightly 
different power of k ,  while its dependence on N and M will be fixed by the central limit 
theorem. Numerically we found for the 'optimal' choice (9) 

If we use PN = l/p = constant instead of (9), we find slightly worse behaviour, 
ARk/Rk a ko.50(Ny/M)1/Z,  indicating that (9) is also the optimal choice for R N .  

Results for nk are shown in figure 1. In this figure we have combined results from 
various runs with different [PN}. Using the left hand part of (4) we first computed the 
corresponding C ( N ) ,  and then divided by suitable factors in order to enhance the significance 
of the plot. Indeed, the quantity plotted in figure 1 is 

for two different sets of (p,  y )  pairs. This should tend towards a constant for N --f 00, 

if p = I / p c  and y were chosen correctly. In addition to our Mc data we also show exact 
enumeration results from [7] which agree perfectly with our results for small N .  

3-6 S m ' s  

5 

0.98 - 
pc = ,2134924, 7 = 1.16085 : 

MC - 
exact (MacDonald et al.) 0 0 .97  - 

ps = 2134981, 7 = 1.161932 : 
MC 0 . 9 6  - 

exact (HacDonald et al.) 0 

0 .95  

0.94  

0.93 

0 .92  

0.91 
1 10 100 1000 N 

Figure 1. Semi-logarithmic plot of the quantity defined in (13) against logN. For the c o m t  
values of ps and y the curve should be horizontal up to statistical fluctuations. The broken curve 
is for the best previous values of pe and y .  while the full curve is for our proposed values. 
Vpical error bars are only given in a few points in order not to overcrowd the picture. 

The constant 0.446 added to N h t h e  denominator of (13) takes into account the leading 
correction to scaling which was found to be compatible with it W i g  analytic. This is in 
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agreement with [7], where it was also found that the non-analytic corrections known, e.g., 
from field theory IS] do not couple to C(N). 

One of the curves is obtained with the central values of [7], pc  = 0.2134987, y = 
1.161 932. It seems definitely ruled out by our data, by roughly six standard deviations. 
The other (much flatter one) corresponds to the central values of our new estimate 

pc = 0.2134924~0.0000010 y = 1.1608f0.0003. (14) 

Notice that the estimate of pe uses only the new MC data, but the estimate of y needs both 
the MC data (to pin down p c )  and the enumeration data. Without the latter, the best estimate 
of y would have been 1.160 f 0.002. The observation that exact enumerations give poor 
results for pc  and can lead to very precise critical exponents when supplied with estimates 
of pc  from MC simulations was also made in [9] in another context. Note also that the 
error estimate is straightforward for p c ,  while it is an 'educated guess' for A, as is usual for 

While we measured nk from runs with N up to 200Q (using lattices of up to 4 x lo7 
sites with helical boundary conditions and multispin-coding [lo]), we measured RN only, 
on walks of length up to N = 1000. This was done in order to reduce CPU time. 

Our results for RN are shown in figures 2 and 3. In figure 2 we plot the quantity 
RN/No,59 against log N .  We show not only our own data, but also results from exact 
enumerations [Ill,  from older MC simulations of Rapaport 1121 and two sets of data obtained 
with the pivot algorithm [2,13]. The simulations from~[13] were indeed done for a slightly 
different geometry. Instead of allowing the SAWs to occupy the whole cubic lattice, a 
needle along one of the axes starting from the origin of the SAWS was excluded (for earlier 
simulations with this geometry, see [14]). In order to compare our results with these data, 
we have also performed some simulations with the same needle excluded. They are also 
shown in figure 2, along with our simulations for the ordinary geometry. 

From figure 2 we can immediately make several comments. First, the data of [12] are 
definitely too low. Although no error estimates were given in 1121, it was suggested there 
that the errors can be estimated from the deviations from a straight line in a log-log plot. 
As seen from figure 2; this is not true. Second, our simulations agree perfectly with the 
exact enumeration results and with the very high statistics results of 1131. They also agree 
with the results of [2], but the latter are considered as preliminary by the authors and should 
be superceded by more precise estimates. 

Finally, we see very large,corrections to scaling in the ordinary (no excluded needle) 
SAWS; but much smaller deviations in the excluded needle results.. For ,the latter it is clear 
that the slope at large N is negative, i.e. U < 0.59. Both curves seem to converge for large 
N, which implies that there is substantially more cwature in the ordinary SAW data than 
in the excluded needle data at large-N. This suggests that the leading correction to scaling 
exponent A defined by 

critical exponents. ~~ 

might be smaller for ordinary SAWs than for SAWs with an excluded needle. 

in a log-log plot, 
The latter is also supported by studying effective.exponents obtained from local slopes 
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Figure 2. Semi-logarithmic plot of RN/NO.” against logN. The plot shows our MC data both 
for ordinary SAWS (full curve) and for an excluded needle (chain curve), together with older 
results: exact enumerations [I l l  (0). MC data of [I21 (t) and MC data obtained with the pivot 
algorithm. The latter are for ordinary SAWS from p] (0) and for an excluded needle from [I31 
(A). Relative enols of OUT MC data are M.0695 ( N  = 1000, ordinary SAWS) resp. *0.05% 
( N  = 150, excluded needli). 

For our data, we took a = 2, for the data from [3,13] we used a m 2 when a = 2 was not 
possible. According to (15), u&(N) should have a term Cc 1/NA which should give alinear 
curve when plotted against ljNA. Such plots are presented in figure 3, with A = 0.22 for 
ordinary SAWS and with A‘ = 0.45 for the excluded needle. From the linearity of the curves 
we conclude that these are indeed the leading exponents, with errors M A0.05. The latter 
error estimate is just a very subjective guess, but it would seem very difficult to explain the 
data with the same A for both sets. 

A leading correction exponent A = 0.22 was predicted in [13] where essentially the 
excluded needle data were used. It seems ironic that we find that the amplitude of the 
leading term vanishes for just RN for these data (it is non-zero in other observables such 
as ZN where z is the coordinate parallel to the needle), while we confirm it for ordinary 
SAWS. On the other hand, our value of A’ agrees with field theory estimates [SI. We thus 
conjecture that the leading correction was missed in [SI and decouples for some unknown 
reason from RN in the excluded needle geometry. 

Using these corrections to scaling we can now estimate U simply by extrapolating to 
N -+ M in figure 3. From the excluded needle data we get an estimate which is even 
somewhat lower than that of [13] (which is already lower than previous estimates), but 
compatible with it. For ordinary SAWS our exmpolation would be even smaller (by a 
considerable amount), but this extrapolation is much less certain because of the smaller A 
(see figure 3). Our final estimate 

(17) 

’ 

U = 0.585 & 0.0015 
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Figure 3. Effective critical exponents defined in (16). On the horizontal axis N - A  with 
A = 0.22 for ordinay SAWS (0, +). respectively A’ = 0.45 for an excluded needle (x, A) is 
shown. Error bars on ow data are. only given for the k&st values of N ,  for smaller N they 
are typically smaller than the symbols, 

is thus entirely based on the excluded needle data, and does not use the data from ordinary 

Finally let me make some comments on the (pseudo-) RNG used in the above simulations. 
This work was stai-ted with the KirkpatrickStoll RNG [15] x. = x,-m XOR x,-zo. This 
is a very popular RNG with very long periodicity (2’”) and no documented deviations 
from uniformity. While I had used .it extensively for non-recursive algorithms with no 
apparent problems, problems (though statistically not quite significant) first appeared in a 
recursive (depth-first) study of 2D percolation backbones [16]. In the present simulations 
it gave very significant deviations which were already evident after 4 x IO9 calls 
(corresponding to approximately 10 h CPU time on the low-cost work stations used for 
this work). This deviation was in the form of ‘an excess in rzk at k = 20, and a dip 
at k = N - 20. It seems that the origin of these problems are triple correlations with 
characteristic times = loz - IO3. After completion of this work, I learned that similar 
problems with the above RNG were also recently observed in [I71. The results presented 
above were pmly obtained with a more complicated shift register generator taken from U S ] ,  
x,, = XOR xn-314 XOR ~ ~ - 4 7 1  XOR Xn-9689, and partly by ‘XOR-ing’ the integer 
outputs from two simpler RNGs. Both methods seem to be safe for studies of the present 
size (= RNG calls altogether). 

In summary, we have used a novel recursive sampling method to obtain the most precise 
vilues to date for the connectivity constant of SAWS on a simple cubic lattice, and for the end- 
to-end distances at intermediate chain lengths. Combining this estimate of the connectivity 
constant with previous exact enumerations, we~obtain what seems to be the most precise 

SAWS at all. 
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estimate of y . Combining our values of RN with those for much longer chains obtained by 
means of the pivot algorithm, we obtained new and surprising values for the correction to 
scaling exponents A and A’. These, in turn, suggest that v might be even lower than the 
value given in [13] which was already lower than previous estimates. 

The efficiency of the recursive sampling method for estimating the connectivity constant 
results from a very efficient use of the random number generator. This also means, however, 
that the method is extremely sensitive to correlations in the random numbers. 
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